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We describe an improved multifrequency-gray method for time-
dependent nonequilibrium flux-limited radiation diffusion in a high
temperature system, using a two-temperature model for electrons
and ions and including energy exchange between photons and
electrons by Compton scattering. Our gray equation has a nonsym-
metric finite difference matrix that allows us to represent negative
gray diffusion coefficients, which occur in the presence of a “green-
house” effect, in a numerically stable manner. Numerical results

are presented. «» 1995 Academic Press, oo,

I. INTRODUCTION

Radiation transport in a nonequilibrium high temperature
system, such as is encountered in plasma physics or astrophys-
ics, is often calculated by using multigroup radiation diffusion.
When the energy in the radiation field is comparable to the
material energy and interacts strongly with it, the rcadiation
and material encrgy ficlds must be advanced in time simultane-
ously in order to permil timc steps that are physically
reasonable. A method currently in use for solving this coupled
system of equations is the multifrequency-gray (MFG) method
of H. L. Wilson {1] and B. Freeman [2]; see also [3]. In
this paper we describe an improved version of the MFG
method which has two new features: (a) energy exchange
between photons and electrons by Compton scattering: (b)
a stable numerical scheme for representing negative gray
diffusion coefficients.

In the following sections we discuss the differential equa-
tions, the MFG mcthod. the finite difference equations and
numerical methods for their solution, and we present some
Lypical resulls.

1t. DIFFERENTIAL EQUATIONS

The frequency-dependent radiation diffusion equation, de-
rived from the frequency-dependent radiation transport equa-
tion {4], is
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where ¢ is the frequency variable {(in energy units), (v, r, 1)
is the radiation energy density perunitencrgy, I, is the radiation
flux, p is the matter density, w is the matter velocity, B, is the
Planck function B{v, T = (const)v¥/{e”” — 1) normalized to
aT*, T, is the clectron temperature, «, is the reduced absorption
opacity,  is the radiation constant, c is the speed of light, and
§, is a source rate. We have used the subscript v as an abbrevia-
tion for functional dependence on frequency; e.g., E, = E(y,
r, 1), where r is the position vector and ¢ stands for time. The
term comntaining w represents a frequency shift due to material
motion. The function H(v, T.) represents Compton scattering
in the Fokker—Planck approximation,

H.T,) = n” 8 -G, T.),

where oy is the macroscopic Thomson cross section, fi is
Planck’s constant, and m is the electron mass. G(v, T,) is the
Kompaneets expression | 5] multiplied by Cooper’s relativistic
correction factor [6] g(v, T.) (sce Appendix A):

¥

G(v,Tc)Eg(u,Tc)v“( +f+f)

Here f(v) is the photon distribution function: f(v) = (IFc?/
8mE()/v?, The correction factor g(v, T,) extends the upper
limit of accuracy of the Fokker—Planck approximation to tem-
peratures of about 100 keV.

In the diffusion approximation, the flux is given by

F,= —cA, VE,, (2}

where c¢A, is the ux-limited diffusion coefficient [7].
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MULTIFREQUENCY-GRAY METHOD

Besides Eq. (1) for the radiation energy, we have two equa-
tions for T, and the ion temperature T;,

aT, %Y
c~ _V.F -2 -
C, o F, - I ry CJ' #,(B,— E,)dv
——J' v——dv QT.—T)+ 8, (3)
Ci‘g= ~-V.F - II,— OV +Qm(T T)Y+ S, (4
where
8£e aEi aSe asi
= T TTrtns NeEntyy

Here ¥ is the specific volume, &, and & are the electron and
ion specific energies, respectively, p,. p; are the electron and
ion pressures, respectively, S, and § are electron and ion specific
energy sources, respectively, and £}, is a function of 7, and T
representing the Coulomb interaction of the electrons and ions
which are each assumed to have Maxwellian velocity distriba-
tions {8]. The quantities F, and F; respectively represent electron
and ion heat conduction fluxes,

FeE _Dc VTe: FiE _Di VTls

where D,, D, are flux-limited conduction coefficients.

At high temperatures and densities, the radiation energy den-
sity is large and is strongly coupled to the electron energy
which in turn is strongly coupled to the ion energy. Hence we
need to advance all three energy fields in time simultaneously
in order to be able to use a time step which is large compared
to the characteristic emission or absorption time (cpk, ) or
the analogous Compton scattering time. For this purpose we use
a modified MFG method as discussed in the next two sections,

III. THE GRAY RADIATION ENERGY EQUATION

We obtain an equation for the gray (total) radiation energy
density E by integrating Eq. (1) over frequency:

HE!p) V-w JE,
el Sl = . 4+ —=
7] o cV[)LVEdv 3 Ovav

dv

+cpf K. (B, — E)dv+J

We convert the integrals over frequency in (5) to functions
of E and T., as follows:

(a) Emission. Dividing and multiplying by the integral of B,
over frequency, we get
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JK(T)B (T.) dv = M fB(T)dv
[ BT v
©)
| kTBT) dv
m e —— T} = k(T )JaT}.

j B(T.)dv

The mean emission opacity k, is the usual Planck mean opacity.
It is a function of T,, using the latest available estimate of T,.

(b) Absorption. Dividing and multiplying by the integral of
E, over frequency, we get

f . E, dv f &, E, dv
S jEvdua———

E=gE (M
jE“ dv

JK,,E,, dv= J.Evdv

The mean absorption opacity «, is a homogeneous functional
of the spectral energy density E,, using the latest available
estimate of E,.

(c) Material motion. Using the relation

1oV

v
w= ¥ ar

and integrating by parts

V==

OF, E_
3= TP

ljm
- d
30vav

where p, is the radiation pressure, we get

1 o aE:v GCV
EV'Wfovav dv=~pp, . )

(d) Compton scattering. Integrating the Compton scattering
term, we obtain (see Appendix B)

. 8H, 4o
fv——dv—HL(T T)E ©)

which expresses energy exchange by Compton scattering be-
tween electrons and photons as the difference between ‘‘emis-
sion’” and *‘absorption”” terms. Here L is a dimensionless rela-
tivistic correction factor, and 7., which we may call the
“Compton temperature,” depends on the radiation spectrum
and is approximately one-fourth of the average spectral energy.
For a Planckian spectrum, T, equals 7., the radiation tempera-
ture {E/a)'". Equation (9) turns out to be a generalization of a
well-known formula due to Hurwitz [9] and Weymann [10],
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derived in an entirely different manner, for the rate of Compton
scattering energy exchange between an electron gas at tempera-
ture 7, and a Planckian radiation field of energy density E. It
reduces to their formula when L =1l and T, = T,.

(e) Diffusion. In one space dimension, we average by dividing
and muiltiplying by the integral of the gradient of E, over
frequency, obtaining

F_ -[AVE,av=- M | vE.av
¢ JVEvdv
(10
j;\vVEl,dv
z—mVEE —)15VE,

thus defining a gray mean free path A; as the ratio of two
integrals containing the gradient of E,, the latest available
spectrum.

In the equilibrium limit, where E, becomes equal to B,,
a function of T,, we have gradients of 7, in numerator and
denominator which cancel and A; becomes the usual Rosseland
mean free path A;, where

/\R=f,\v2—idv/fa£:dv.

This expression, which is positive, is valid also in the multidi-
mensional case.

In the nonequilibrium case, Ag is not well conditioned and
may be negative, which leads to numerical instability but, as
we show in Section X, is physically correct. To obtain an
expression that is numerically stable and also valid multidimen-
sionally, we do not use Ag, but instead we integrate in frequency
over the finite difference expression for F. We assume that at
the interface between two zones, the gradient of E, is approxi-
mated by a two-point expression having the form

EI—E;
VE =2 _"*
Ax

where + and — refer to the zones lying on each side of the
zone interface and Ax represents an appropriate measure of the
distance between zone centers, Then instead of {10) we write

F 1
—_——= — V = —— 1A E+_ -
" f/\v E,dv ij AE; —EJ)dv

{10a)
_ MET — AN E
Ax ’
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where

j MESdv [ A av

E'= [E:dv, E = J‘E; dv.

A A

J’E: dv (](]b)

The denominators of these expressions contain E, instead of
VE, and, hence, are always positive. Using (10a) and (10b),
with two spectrum-dependent diffusion coefficients at each zone
interface, allows the gray energy to diffuse with or against the
gradient of E, depending on the relative magnitudes of A*E*
and A"E~. We thus achieve the same result as using a negative
Ag, but in a numerically stable way, Other users of the MFG
method have resorted to incorrect ad hoc procedures such as
forcing Ag to be positive [11]. For discussion of the general
case, see Section VIL

We can obtain a numerically stable diffarential form equiva-
lent to Eq. (10a) by rewriting ¥ in the form [12]

Fo_y J ME, dv + JE VA, dv = - V(AE) + (VA)E,

c

where

1= j)lvadv/j E,dv

and

VA= j(VAv)Evdv/f E, dv.

The denominators of these expressions also contain £, instead
of VE,. We thus obtain
F= —cAVE + (VA — VA)E. (11)

The first term in Eq. (11} has a positive diffusion coefficient,
but it may be dominated by the second term; if the latter is
negative, we get the same result as using Eq. (10) with a
negative diffusion coefficient. By using this form we avoid
numerical instabilities but add an advection term to the gray
energy equation. As E, approaches B,, this advection term
disappears, Ag approaches Az, and the expression for F given
in (11) becomes the usual expression (10).

Substituting Eqgs. (6} to (9) and (11} into Eq. (5), we get the
gray energy equation

p L Elpy = V- RVE - FA - VDE) - pp e
ar dt (12)

40'0 B
+ CP(KpaT: - KaE) + ;;L'Tn: - TC)E + Sn
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where 8. is the integrated radiation source. Using (6), (7), and
{9), we can eliminate the integrals over frequency from (3) and
rewrite it in the form

&7,
o =-V.F.— Heﬂ- — c{xaTs — K, E)
at at

(122)
40’0

- _L(Tc - Tc) - Qel(Te - Tl) + Se'
pmc

Numerical solution of the coupled energy equations (12a),
{4), and (12) is discussed in Section VIII,

1V. THE MULTIGROUP EQUATIONS

To form the multigroup diffusion equations, we choose a
nonuniform frequency mesh v, (k = 1, 2, ..., kg, ), integrate
Eq. (1) over each group k, and average. We get

9
p:]—t(Ekfp) + V- F, = cpii(By — E)

+ Veri2 (EH—I - Ek) V.w

3 Vier = Vg

+ " (Gk+1f2 o Gk—h'z) + Sk

Vierg = Ve-isz

(13)

(k = l’ 21 ey kmax)
where
Fk = _C/\-k VE;(.

Here the coefficients k, and A, represent averages over the
kth group. The calculation of vy, and G,y 1s discussed in
Appendix A.

V. THE MULTIFREQUENCY-GRAY METHOD

The multifrequency-gray method consists of the following
operations, carried out over each time step:

(a) solve the system of Eqs. (13) for E; with T, fixed;

(b} using 7, and the spectrum E; just obtained, calculate the
gray coefficients L, T;, k,, x,, and A%, which govern the emis-
sion, absorption, and diffusion of gray radiation energy;

{c} solve the system of Egs. (3}, {(4), (12) to obtain new
values of E, T,, and T:.

By adding the redundant Eq. (12) we have split the system
of equations {3), (4), {13) into two simpler systems:

(A} the &, multigroup equations (13)
(B) the three energy equations (3), (4), (12).

No epergy exchange takes place when solving the multigroup
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equations (A); they are used only to update the radiation energy
spectrum, which is then used to calculate the gray coefficients
for equations (B). We have found that when solving the
multigroup equations (13), it is practical to uncouple them by
treating the velocity and Compton scattering terms by operator
splitting. The difference equations for Compton scattering are
discussed in Appendix A.

Lund [13] has proposed iterating over steps (a) to (c) so that
the solution will be fully implicit. This means that the integrals
of B, and E, over frequency, which form the denominators of
Eqs. (6), (7), and (10b), will equal 2T and E, respactively, as
we assumed. Since for reasons of efficiency we do not iterate,
our scheme is only semi-implicit. In regions where T, or the
spectrum E, is changing rapidly, there may be some inconsis-
tency between these integrals and their gray values, but it is
usually small. The gray coefficients ,, A%, and A~ are not
sensitive to changes in 7T, or the radiation spectrum E, because
the spectral integrals appear in both numerator and denomi-
nator.

We solve these equations in finite difference form which we
derive in the next three sections.

V1. FINITE DIFFERENCE FORM OF THE MULTIGROUP
DIFFUSION EQUATIONS

Using a control volume approach to derive the finite differ-
ence equations, we integrate each of the k., equations (13)
over a zone volume &V and over the time step Ar. We omit the
velocity and Compton terms which we treat by operator split-
ting. For the kth equation this gives us

fp%(%) av=—[V-F.dv

(14)
+ cfpkk(Bk —E)dV+ fSde.

Using Gauss’ theorem, the first integral on the right-hand
side becomes a surface integral,

~IV.dev= —ka-mm :cf,\,:VEk.ﬁdA,

where fi is the unit outward normal vector at the zone surface.
Discretization of this surface integral will depend on the shape
of the zone, but in general it leads to an expression of the form
[14] wi(E:, — E;,), where the subscripts § and j refer to adjacent
zones. The coupling coefficient wi depends on geometricat
factors and on the mean free path A4 evaluated at the edge
between zones I and j. It is symmetric; i.e., w§=wi. Ina 1D
mesh or in a rectangular 2D mesh, wk > 0, but in a distorted
mesh it is possible to have wf < 0. However, it can be shown
that in general
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> wh>0, (15)
summing over the neighboring zones i of zone J.
Discretizing the other terms, we obtain for zone j,
8V;- By — 8V Ef= At 2 (whY'(By — Ey)
-+ CK-?_]( At §mj(Bf,k - Ej.k) (163.)
+ 855 A8V;, (k=1,2,.. kn)

as the finite difference form of Eqs. (13). Here 8V is the zone
volume, &m is the constant zone mass, and the sum is over
the neighboring zones i of zone j. The superscript n refers to
discretization in time: variables with superscript » are evaluated
at the time ¢, the beginning of the time step; those without a
superscript at time **', the end of the time step.

Equations (16a) can be rearranged into the form

(31/,. + oKy Ar dmy + A1 Y w:t;.) E.— At ), whE,

(k=1,2, ..., knad,

(16b)

dropping the superscript # on the coupling coefficients for
simplicity of notation. Because of (15), the diagonal elements
of the matrices in (16b) are positive.

VII. FINITE DIFFERENCE FORM OF THE GRAY
DIFFUSION OPERATOR

Since the gray energy density E is defined only as the solution
of Eg. (12), it is not guaranteed to be equal to the integral of
E, over frequency. To maintain consistency between the gray
and multifrequency solutions, we need to difference the gray
Eq. (12) in a manner that is consistent with the multigroup
difference equations (16). If we try to difference (12}, we face
the problem of differencing the advection term in a manner
consistent with the differencing of the A, VE, terms in Egs. (16),
which do not contain gradients of A,. To avoid this problem, we
derive the gray energy difference equation directly from the
multigroup difference equations (16) by integrating them over
frequency. This means that we integrate over frequency after
spatially differencing the multigronp differential equations
rather than before [15].

The sum in Egs. (16) for zone j and frequency group £ is

Sk =2, wh(Ey — Ey) (17)

summed over the neighboring zones ¢ of zone j. Multiplying
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(17) by Av,, the width of group &, and summing over all
frequency groups, we get

5, = 2 (wy,E — Wu'JEj),

(18}

where E; and E; represent the gray energy densities in zones i
and J, respectively:

L= 2 Egxbv, E= 2 Eix Av,.
% ;

We have averaged the group coupling coefficients wf separately
over E;; and E;; to form two gray coupling coefficients:

Wi-j‘,‘ = 2 Wﬁ-E,-J‘ Avk/g E:',k A'I)k
and
Wy = 2 WEFEj.k Avk/g .E:,"k Avk

which have positive denominators. The third subscript on these
gray coupling coefficients indicates the zone over whose spec-
frum we average.

Some basic properties of the gray diffusion matrix wy; are:

(1) in general, w;; ¥ wy;; 1.e., it is nonsymmetric (although
symmetric in its sparsity structure);
(2) it is conservative. Consider the flux F;; from zone i to
zone j:
Fy=wi B — wy B (19a)
Interchanging i and j, and using the fact that wy;,; is symmetric
in the first two subscripts, we get

Fy = wy B — wy By = — Fy;

(3) it is flux-limited, since flux limiting is incorporated in
the coupling coefficients w}; for each group;

{4) it permits gray energy to flow ‘‘uphill,” i.e., from low
to high energy density, depending on the relative magnitudes
of wy;,; and wy;,. This is a fundamental property of non-Planckian
gray radiation and gives rise to the “‘greenhouse’” effect (sce
Section X). By using two positive coupling coefficients for
each pair of coupled zones, we achieve the same result as using
a single negative diffusion coefficient, but without the resulting
numerical problems.

The degree of asymmetry of the gray diffusion mairix is
problem-dependent. We can see this by writing the flux Fy,
from (19a), in the symmetric form

I3
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wil — wi B
B (19b)
= (le)(Ei - E;‘),

where

2&: Wﬁ'(E:‘,k - Ej,k) Av,
{wy) = .
' ; (B — B0 Av,

In equilibrium regions, where E, approaches B,, (w;} clearly
becomes proportional to the Rosseland mean free path Ay in
finite difference form, and we can use the symmetric form
(19b) instead of (19a). Where there is a ‘‘greenhouse’ effect,
however, (w;) will be negative (see Section X) and we must
use the nonsymmetric form (19a).

VII. FINITE DIFFERENCE FORM OF THF. COUPLED
ENERGY EQUATIONS

Using Egs. {6), (7), (8), and (18) and discretizing by inte-
grating over Ar and 8V, the energy differential equations (12a),
{4), and (12) can be written in finite difference form for the
Jth zone (for simplicity of notation we have suppressed the
subscript j) as follows:

CT.—TH =LATHAt =TI, AV — 0 A{T, ~ T})

+ S, A — . Ar (20
C{T.—TH = L{T)Ar— 1AV
SV-E — 8V™E" = —p, AV + At D, (w, E, — wiE)
+ 8, At + y. At 6m, 22)

where
AV = 8V — sV,

Wi = Wy, W = Wy,

and C,, C, P., P;, Wy, S.. 5, S,, and p, are all evaluated at
time ¢". Here L. and L, are the electron and ion conduction terms,
respectively, and . is the electron—radiation coupling term:

40'0
KXer = C(KpaT: - KaE) +— LT, - Tc)E
pmc
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Substituting this into (22) we have

4(1’0
VI 1+ pox, At — ELAt(Te =T+ w Ar

E— At w,E = 8V'E"—p, AV + 8, At (23)

+ ¢k, At dm aT .

Because of (15), we have w; > 0, and the diagonal elements
of the matrix will be positive if T, = T,. If T, > T,, then the
diagonal elements will be positive if the time step Ar satisfies
the restriction

1 mc? 2x10°8
Ar < — =
PPy (Tc = Tc) pL(T. — T.) "

(T.,7T.inkev)

In order to solve Eqs. (20} to (22), we use operator splitting
and first calculate conduction only,
CAT¥ — T) = L(T¥) At
G(TF = Ti) = L(TF) A,
thus advancing the electron and ion temperatures to
T¥ and T#, respectively and reducing (20} and (21) to
CT.— T¥) = ~ILAV - Q AT, — T))
+ 8. A — y. At (24)

C,(T, - Tl*) = _Hi AV + Qei Af(Te - T,) + Si Ar. (25)

Next we formally eliminate the electron—ion coupling term.
Defining the dimensionless electron—ion coupling parameters

O, At QA
CrQ.Ar G+, A

X =

and making use of the identities

C.Ci+{(C, + COQds Ar = (C, + Qq At X(C, + xC)
= (Ce + Qci AI)(CI + yCe),

we can rewrite Eqs. (24) and (25) with £); hidden, but with
altered specific heats and source terrms

CHT,—Tr*y=—HrAV+ 5FAr - y, At (26)

CHT — T = —IIF AV + SFAr - yx. A1, (27)
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where the starred variables C¥*, P*, S%, ete. represent mixed
electron—ion quantities having the form

JESftxf, fE=f+n

and the mixed electron and ion temperatures 7#* and T#** are
defined by

CITFF = CT¥ +xCT¥, CHT¥*=CTF +yC,T#
In the limit of zero electron—ion coupling (x = y = (), the star
superscripts disappear, while in the limit of infinitely strong
coupling (x = y = 1), the electron and ion energy equations
reduce to one equation for the total material energy.

We linearize y. in T, and E by using the approximations:

AT,
Ti=(T7+ AT = (T%' + 47" AT, (1 + %—T— +oee )

= 4(TYT. — (T,
provided AT, < T7, and

T.E=(T" + AT.)(E" + AE)

AT,
= (T.E" + ET? — T1E") (1 +—A—E/(1

N AT, AE
Tt E" T2 En

~T.E"+ ET! — TIE™,

provided AT, <€ T{ or AE < E* Using the linearized form of
Xe in Eqs. (22) and (26), we formally solve (26} for 7. and
substitute into (22), yielding an equation that can be solved for
£, as discussed in the next section. We then solve (26) for T,
and finally (27) for T,

IX. NUMERICAL SOLUTION OF FINITE DIFFERENCE
EQUATIONS

(a) Multigroup equations. Each of the ks multigroup
difference equations (16) has the form Ax, = by, where A,
is the vector of the unknown E,’s, and b, is a known vector.
For 1D problems, the matrix A, is tridiagonal and is easily
solved by Gaussian elimination in the *“‘back substitution’®
form. For 2D problems we use the incomplete-Cholesky
conjugate gradient (iccg) method as advocated by Kershaw
[le].

Since the £,'s are formally decoupled in (16), these equations
are well-suited to solution by parallel processing.

(b) Gray equation. After eliminating T, Eq. (22} is anonsym-
metric equation for E of the form Ax = b, where x is the vector
of unknown £’s. In 1D, the nonsymmetric gray finite difference
matrix A is tridiagonal and its lack of symmetry is not a barrier
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to its solution by Gaussian elimination (“‘back substitution’").
However, in 2D, iterative schemes which require A to be sym-
metric, such as conjugate gradient methods, cannot be used.
This restriction applies also to the methed of Concus, Golub,
and O’Leary [17] for nonsymmetric matrices because their
method requires that the symmetric part of A (=(A + AT)/2)
be positive definite. It can be shown that A does not have
this property.

Currently we solve (22) by a first-order iterative scheme.
The equation for x"*', the (m + 1)" iterate, can be written

X" =x"+ M(b — Ax™) = x" + 2", (28)
where
Mz = pm (29)
and the residual at the m" iteration r™ is given by
r=pb — Ax",
We can write (28) in the form
X" = (J — MTAX" + M~'b (30)

and we see that the convergence rate will depend on the eigen-
values of the matrix { — M~'A; rapid convergence requires that
M~'A be close to the unit matrix 7.

Two preconditioning matrices M have been used success-
fully:

(1) incomplete LDU factorization. M, = LDU, where the
three matrices LOU are respectively lower triangular, diagonal,
and upper triangular, chosen so that M; = A, where A, # 0,
otherwise we set M; = 0, thus forcing M, to have the same
sparsity pattern as A. This is the analogue of the incomplete
Cholesky factorization for symmetric matrices (see {14] for
details). In constructing M, we take advantage of the fact that
A is symmetric in structure. The inverse M;! = U~'D'L is
easily obtained recursively.

(2) symmetrization. We define M; to be the matrix of the
symmetrized problem; i.e., in (22) we replace the diffusion
matrix elements wy; and wy, by wy = (w,; + w,;,)/2. Since M
1s symmetric and positive definite, we can then solve Eq. (29)
by the iccg method (inner iteration), update r” (outer iteration),
and solve (29) again until convergence.

When it converges, using M, is usually faster than using M.
However, convergence sometimes fails when using M,, whereas
iteration with M; so far has always converged.

Because Eq. (30} is only first-order, solving it generally takes
more iterations (usually by a factor of 5 to 15) than solving a
group equation. In a problem with many groups (we typically
use 2¢ to 50) this is not a large cost.
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FIG. 1. Equilibration by Compton scattering only.

X. NUMERICAL RESULTS

A. Energy Exchange in an Infinite Medium with an Initial
Planck Spectrum

The heating or cooling of a photon gas, initially in a Planck
distribution, demonstrates energy exchange in an infinite me-
dium. In the following two problems we have used ionized
hydrogen at a density of 1 gm/cm?. In Figure 1 we show graphs
of T.. T., T, versus time with energy exchange by Compton
scattering only (keeping only the third term on the right-hand
side of (1)). Here T, = T initially, since we begin with a Planck
spectrum. The photons gain energy from the electrons and reach
equilibrium when 7, = T, but 7, < T,, since there are not
sufficient photons (in the absence of emission processes) and
equilibration occurs with a Bose—Einstein spectrum,

In Fig. 2 we show the results of another calculation in which
emission and absorption also took place. Equilibrium is reached
at a later time (not shown), and we then have a Planck spectrum
withT, =T, =T,

B. Diffusion of a Non-Planckian Spectrum and the
Greenhouse Effect

A non-Planckian spectrum can easily be produced by spheri-
cal divergence of a Planck spectrum. We consider an aluminum
sphere of radius @ = 1 cm, density 2.78 gfcm?, separated from
a concentric spherical aluminum shell of inner radius 51 cm
by a region of He* gas at density 0.0001 g/cm?. Let the initial
temperature of the sphere be 7, = T, = 2 keV and of the outer
two regions 0.01 keV. For simplicity we ignore hydrodynamics.
The radiation emitted from the sphere maintains its Planckian
spectral shape as it crosses the He* because the mean free path
there is on the order of 1000 cm, However, when R > a, the
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FIG. 2. Equilibration by Compton scattering, emission, and absorption.

energy density E is reduced proportionally to R ™%, where R is
the distance from the center of the sphere, so that we have a
“dilute’’ Planck spectrum whose color temperature is approxi-
mately 0.2 keV but whose energy density temperature T, is
about (0.1 keV, an energy density dilution factor of (0.2/0.1)
= 16. The arriving photons are absorbed in the aluminum shell
and reradiated as softer photons which have much shorter mean
free paths and thus less ability to escape. The gray energy
density E inside the aluminum shell becomes greater than E in
the neighboring gas and, since the gray energy flux is directed
outward, the gray diffusion coefficient must be negative. This
problem is a good test of our gray diffusion equation.

A graph of T, and T, versus radius at £ = 2 ns is shown in
Fig. 3. A narrow temperature maximum just inside the alumi-
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FIG.3. 7., T.vsradiusatt = 2 ns.
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FI1G. 4. T,. T in shell vs radins at ¢+ = 2 ns.

num shell, due to the greenhouse effect, appears in Fig. 3 and
is shown enlarged at = 2, 3, and 5 ns in Figs. 4 to 6. Graded
fine zoning, of the order of a mean free path in thickness, was
used at the inner surface of the shell in order to calculate this
effect. We also show T, versus radius in Figs. 5 and 6. As the
inner surface of the shell reaches equilibrium, T, decreases and
approaches T, and T..

XI. CONCLUSIONS

We have demonstrated an improved form of the multifre-
quency-gray method for radiation diffusion in one or two space
dimensions which includes: {a) Compton scattering energy ex-
change:; (b) a nonsymmetric gray equation which can handle
the physically realizable situation where the symmetric gray
diffusion coefficient becomes negative.

0.20
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(keV)
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0.10

0.05

O-m 1 L
5098 51.02 51.06 51.10
Radius (cm)
FIG. 5. T, T, T,in shell vs radius at r = 3 ns.
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FIG. 6. T, T., 7, in shell vs radius at / = 5 ns.

The accuracy of this method has been assessed in a few
cases by comparison with the results of an implicit Monte Carlo
calculation, especially for the greenhouse case. The agreement
was generally good. Another accuracy test that can be made is
to compare the integral of energy over the multifrequency
groups with the gray energy. Using physically reasonable time-
steps, these agree within a few percent.

We are continuing to investigate faster iterative methods for
the solution of the gray equation.

APPENDIX A: MULTIGROUP TREATMENT OF
COMPTON SCATTERING IN THE FOKKER-PLANCK
APPROXIMATION

In the Fokker—Planck approximation, the rate of change of
the photon distribution function f{(v, ¢} due to Compton scatter-
ing is given by

U 2096 (A.D)
dr  mc dv
where
— o Of 2
G, T)y=gv, T (Tcg +f+ 1. (A2)
The relativistic correction of Cooper [6] has the form
g, T)= (1 +av + aw?)'[1 + BT +aw)™'], (A3)

where B(T.) = Su + 2u¥1 — u), u = T,/mc?, and a,, a;, and
a; are positive constants.

Using a non-uniform frequency mesh v, (k = 1, 2, ..., kg..)
in energy space, we difference Eq. (A.1) in the form
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Girin — Gioin
: =At—|——————, Ad
vilh =D = mc( Viryz = Vi1 ) (A4
where
J;
" Gre = SV | T { (vkﬂ -7 + fennl + fiein) |
i+ | f

(A.5)

Here v = (0 + vi)/2 and fip = S + (1 —
S+ 12) ferr. The variable interpolator § of Chang and Cooper
(18] is obtained from the equilibrium spectrum and is recalcu-
lated each time step as the temperature changes. Its use permits
a relatively coarse v, mesh.

Recently simpler differencing methods for {A.1) have been
developed which better preserve positivity of the solution. They
are based on the transformation (discovered independently by
Youngs [19] and Larsen er al. [20]):

af a fe wiT
LTI f=a+fy “”(1 +f)' (A.6)
Using (A.6), we can write (A.1) in the form
2 0f 8 [ferr.
v ar [ ( v, e)a T, (1 +f):|s (A7)
where
D, Ty = g(v, Tv'(1 + /) (A.8)

Differencing schemes for (A.7) using (A.8} are given by Youngs
{19], Larsen et al. [20], and Shestakov er al. [21].

APPENDIX B: DERIVATION OF GRAY EXPRESSION FOR
COMPTON SCATTERING ENERGY EXCHANGE [22]

The rate of change of the radiation energy density E due to
Compton scattering is given by integrating Eq. (A.1} over fre-

quency:
(%)
drj.

Multiplying and dividing the right-hand side of (B.1) by E,

we obtain
- ——dv / f 3fdv

o) (]
dt ¢ mL

=ﬁ8—”r 9G . (B.1)

=
mechicilo Qv

(B.2)
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Temporarily ignoring the relativistic correction (setting g =
1}, we integrate the numerator by parls twice,

o 8G (e (e if
Jﬁva—vdV—— fDde— T“jovda dv
- f: V(L ) dv (B.3)

= 4Tef:v3fdv - j: i1+ £) dv,

where we have assumed that vG and v*f vanish at both limits.
Defining a mean energy of the radiation field which we call
the **Compton temperature’” T,

TcEf:v“f(l +f)dv/4f:v3fdv;

then using (B.3) and (B.4), (B.2) becomes

dEY day,
( dr )c a (T

¥ we now restore g{v, T.) to G and repeat the above integra-
tion by parts, T, becomes

(B.4)

TOE. (B.5)

.= [T gvif1+ ) dv/f:f%(gv“) v (BS)

and Eqg. (B.5) becomes

dE 4o
=) =227 - T)E, (B.7)
dt mc
where L is a dimensionless relativistic correction factor:
TABLE 1
Relativistic Correction Factor L, for a Planck Spectrum
T, (keV)
T. (keV) 5.11 10.22 25.5 51.1 102.2
(.001 0.836 0.721 .510 0.346 0.213
0.835 0.721 0.513 0.344 0.202
5.11 — 0.735 0.512 0.345 0.212
0.850 0.731 0518 0.346 0.203
10,22 0.864 —_ 0.515 0.345 0.210
0.864 0.741 0.522 (.348 0.204
255 0914 0.767 — 0.345 0.210
0.910 0772 0.537 0.355 0.206
51.1 0.997 0.823 0.556 - 0.207
0.990 0.827 0.561 0.366 0.210
12 1.149 0.924 0.5%4 0.369 —
1.159 0.943 0.614 (0.389 0218

Note. Upper values are from Reference [23]. Lower values are calculated.
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FIG.7. Planck relativistic correction factor L, vs T, for various values of T,.

sz:f«é%(gv“)dv/tlf:ﬁfdv. (B.8)

Except for the stimulated emission term proportional to f2,
T, may be regarded as the ‘‘color’’ temperature, or average
frequency, of the spectrum. For certain spectra, it takes on
special values. For a Planck spectrum, where f = (e¥? — 1),
or for a spectrum in equilibrium under Compton scattering
(G = 0), where f = (Ce¥ — 1)7' (C > 1), we [ind from Eq.
(B.6) that T, = 8. In general we find that 7, lies between T,
and T, = (Efa)"™.

For a Planck specirum in the nonrelativistic limit, Eq.
{B.7) becomes

4
("—E) =207, — T)aT?, (B.9)
¢ nc

dr

a result first obtained by Hurwitz [9] and later by Weymann
[10].

Calculation of L for a Planck spectrum from the Klein—
Nishina cross section has been carried out by Warham [23].
His results provide a useful test of Cooper’s function g(v, T.)
given in Appendix A. With T, and v in kilo electron volts,
Cooper’s values for the three constants, obtained from a fit
to the energy transfer rate as calculated by Stone and Nelson
[24], are a, = 0.009, g, = 4.2 X 1075 and a, = 0.02.
Somewhat better values of @, and @, can be obtained as
follows. For T, = 0, g(v, 0) is proportional to the so-called
Klein—Nishina absorption cross section [25]. An expansion
in powers of v shows that, for low v, g{v, O) = 1 —
4.2(v/mc?) + ... so that ¢, = 0.00822 in our units. Also,
vg(v, 0) has a maximum when v = mc?, which leads to
a; = (1/mc?)? = 3.83 x 10°¢

ALAN M. WINSLOW

Using Eq. (B.8) and the revised values of the constants, we
have calculated L, (i.e., L for a Planck spectrum) using 99
frequency groups from 0.5 to 5000 keV for electron and radia-
tion temperatares up to 102 keV. The results are shown in
Table I and Fig. 7. The difference from Warham’s results is
less than 2% for 7., T, << 50 keV, and about 5% for T, or
T, = 100 keV.
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